Extensions 1→N→G→Q→1 with N=C3 and Q=C32×C3⋊S3

Direct product G=N×Q with N=C3 and Q=C32×C3⋊S3
dρLabelID
C3⋊S3×C3354C3:S3xC3^3486,257

Semidirect products G=N:Q with N=C3 and Q=C32×C3⋊S3
extensionφ:Q→Aut NdρLabelID
C3⋊(C32×C3⋊S3) = C32×C33⋊C2φ: C32×C3⋊S3/C34C2 ⊆ Aut C354C3:(C3^2xC3:S3)486,258

Non-split extensions G=N.Q with N=C3 and Q=C32×C3⋊S3
extensionφ:Q→Aut NdρLabelID
C3.1(C32×C3⋊S3) = C32×C9⋊S3φ: C32×C3⋊S3/C34C2 ⊆ Aut C354C3.1(C3^2xC3:S3)486,227
C3.2(C32×C3⋊S3) = C3×He34S3φ: C32×C3⋊S3/C34C2 ⊆ Aut C354C3.2(C3^2xC3:S3)486,229
C3.3(C32×C3⋊S3) = C3×C33.S3φ: C32×C3⋊S3/C34C2 ⊆ Aut C354C3.3(C3^2xC3:S3)486,232
C3.4(C32×C3⋊S3) = C3×He3.4S3φ: C32×C3⋊S3/C34C2 ⊆ Aut C3546C3.4(C3^2xC3:S3)486,234
C3.5(C32×C3⋊S3) = 3+ 1+4⋊C2φ: C32×C3⋊S3/C34C2 ⊆ Aut C32718+C3.5(C3^2xC3:S3)486,236
C3.6(C32×C3⋊S3) = 3- 1+4⋊C2φ: C32×C3⋊S3/C34C2 ⊆ Aut C32718+C3.6(C3^2xC3:S3)486,238
C3.7(C32×C3⋊S3) = C3⋊S3×C3×C9central extension (φ=1)54C3.7(C3^2xC3:S3)486,228
C3.8(C32×C3⋊S3) = C32×He3⋊C2central stem extension (φ=1)81C3.8(C3^2xC3:S3)486,230
C3.9(C32×C3⋊S3) = C3⋊S3×He3central stem extension (φ=1)54C3.9(C3^2xC3:S3)486,231
C3.10(C32×C3⋊S3) = C3⋊S3×3- 1+2central stem extension (φ=1)54C3.10(C3^2xC3:S3)486,233
C3.11(C32×C3⋊S3) = C3×He3.4C6central stem extension (φ=1)81C3.11(C3^2xC3:S3)486,235
C3.12(C32×C3⋊S3) = 3+ 1+42C2central stem extension (φ=1)279C3.12(C3^2xC3:S3)486,237
C3.13(C32×C3⋊S3) = 3- 1+42C2central stem extension (φ=1)279C3.13(C3^2xC3:S3)486,239

׿
×
𝔽